1,797 research outputs found

    hapassoc: Software for Likelihood Inference of Trait Associations with SNP Haplotypes and Other Attributes

    Get PDF
    Complex medical disorders, such as heart disease and diabetes, are thought to involve a number of genes which act in conjunction with lifestyle and environmental factors to increase disease susceptibility. Associations between complex traits and single nucleotide polymorphisms (SNPs) in candidate genomic regions can provide a useful tool for identifying genetic risk factors. However, analysis of trait associations with single SNPs ignores the potential for extra information from haplotypes, combinations of variants at multiple SNPs along a chromosome inherited from a parent. When haplotype-trait associations are of interest and haplotypes of individuals can be determined, generalized linear models (GLMs) may be used to investigate haplotype associations while adjusting for the effects of non-genetic cofactors or attributes. Unfortunately, haplotypes cannot always be determined cost-effectively when data is collected on unrelated subjects. Uncertain haplotypes may be inferred on the basis of data from single SNPs. However, subsequent analyses of risk factors must account for the resulting uncertainty in haplotype assignment in order to avoid potential errors in interpretation. To account for such uncertainty, we have developed hapassoc, software for R implementing a likelihood approach to inference of haplotype and non-genetic effects in GLMs of trait associations. We provide a description of the underlying statistical method and illustrate the use of hapassoc with examples that highlight the flexibility to specify dominant and recessive effects of genetic risk factors, a feature not shared by other software that restricts users to additive effects only. Additionally, hapassoc can accommodate missing SNP genotypes for limited numbers of subjects.

    A Cautionary Note on the Effects of Population Stratification Under an Extreme Phenotype Sampling Design

    Get PDF
    Extreme phenotype sampling (EPS) is a popular study design used to reduce genotyping or sequencing costs. Assuming continuous phenotype data are available on a large cohort, EPS involves genotyping or sequencing only those individuals with extreme phenotypic values. Although this design has been shown to have high power to detect genetic effects even at smaller sample sizes, little attention has been paid to the effects of confounding variables, and in particular population stratification. Using extensive simulations, we demonstrate that the false positive rate under the EPS design is greatly inflated relative to a random sample of equal size or a “case-control”-like design where the cases are from one phenotypic extreme and the controls randomly sampled. The inflated false positive rate is observed even with allele frequency and phenotype mean differences taken from European population data. We show that the effects of confounding are not reduced by increasing the sample size. We also show that including the top principal components in a logistic regression model is sufficient for controlling the type 1 error rate using data simulated with a population genetics model and using 1,000 Genomes genotype data. Our results suggest that when an EPS study is conducted, it is crucial to adjust for all confounding variables. For genetic association studies this requires genotyping a sufficient number of markers to allow for ancestry estimation. Unfortunately, this could increase the costs of a study if sequencing or genotyping was only planned for candidate genes or pathways; the available genetic data would not be suitable for ancestry correction as many of the variants could have a true association with the trait

    Correspondence between genomic- and genealogical/coalescent-based inference of homozygosity by descent in large French-Canadian genealogies

    Get PDF
    Research on the genetics of complex traits overwhelmingly focuses on the additive effects of genes. Yet, animal studies have shown that non-additive effects, in particular homozygosity effects, can shape complex traits. Recent investigations in human studies found some significant homozygosity effects. However, most human populations display restricted ranges of homozygosity by descent (HBD), making the identification of homozygosity effects challenging. Founder populations give rise to higher HBD levels. When deep genealogical data are available in a founder population, it is possible to gain information on the time to the most recent common ancestor (MRCA) from whom a chromosomal segment has been transmitted to both parents of an individual and in turn to that individual. This information on the time to MRCA can be combined with the time to MRCA inferred from coalescent models of gene genealogies. HBD can also be estimated from genomic data. The extent to which the genomic HBD measures correspond to the genealogical/coalescent measures has not been documented in founder populations with extensive genealogical data. In this study, we used simulations to relate genomic and genealogical/coalescent HBD measures. We based our simulations on genealogical data from two ongoing studies from the French-Canadian founder population displaying different levels of inbreeding. We simulated single-nucleotide polymorphisms (SNPs) in a 1-Mb genomic segment from a coalescent model in conjunction with the observed genealogical data. We compared genealogical/coalescent HBD to two genomic methods of HBD estimation based on hidden Markov models (HMMs). We found that genomic estimates of HBD correlated well with genealogical/coalescent HBD measures in both study genealogies. We described generation time to coalescence in terms of genomic HBD estimates and found a large variability in generation time captured by genomic HBD when considering each SNP. However, SNPs in longer segments were more likely to capture recent time to coalescence, as expected. Our study suggests that estimating the coalescent gene genealogy from the genomic data to use in conjunction with observed genealogical data could provide valuable information on HBD

    The relationships between golf and health:A scoping review

    Get PDF
    OBJECTIVE: To assess the relationships between golf and health. DESIGN: Scoping review. DATA SOURCES: Published and unpublished reports of any age or language, identified by searching electronic databases, platforms, reference lists, websites and from consulting experts. REVIEW METHODS: A 3-step search strategy identified relevant published primary and secondary studies as well as grey literature. Identified studies were screened for final inclusion. Data were extracted using a standardised tool, to form (1) a descriptive analysis and (2) a thematic summary. RESULTS AND DISCUSSION: 4944 records were identified with an initial search. 301 studies met criteria for the scoping review. Golf can provide moderate intensity physical activity and is associated with physical health benefits that include improved cardiovascular, respiratory and metabolic profiles, and improved wellness. There is limited evidence related to golf and mental health. The incidence of golfing injury is moderate, with back injuries the most frequent. Accidental head injuries are rare, but can have serious consequences. CONCLUSIONS: Practitioners and policymakers can be encouraged to support more people to play golf, due to associated improved physical health and mental well-being, and a potential contribution to increased life expectancy. Injuries and illnesses associated with golf have been identified, and risk reduction strategies are warranted. Further research priorities include systematic reviews to further explore the cause and effect nature of the relationships described. Research characterising golf's contribution to muscular strengthening, balance and falls prevention as well as further assessing the associations and effects between golf and mental health are also indicated

    Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags

    Full text link
    The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data sample was collected with the CDF detector at the Fermilab Tevatron collider during 1992 - 1995 by triggering on the existence of two lepton candidates in an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) = 1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the measured decay length and reconstructed momentum of the l- D*+ system. The charge of the lepton in the final state identifies the flavor of the anti-B0 meson at its decay. The second lepton in the event is used to infer the flavor of the anti-B0 meson at production. We measure the oscillation frequency to be Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
    corecore